

Ottawa Cycling Safety Study

Study Completion Presentation April 12th, 2011

What we'll talk about

- The cycling context
- Project goals
 - Achieving goal #1
 - Achieving goal #2
 - Achieving goal #3
- Project status
- Next steps

The Cycling Context

Ottawa's Cycling Plan

□ Central goal:

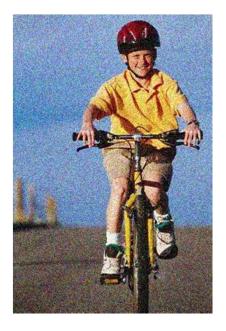
"encourage more people to cycle more often"

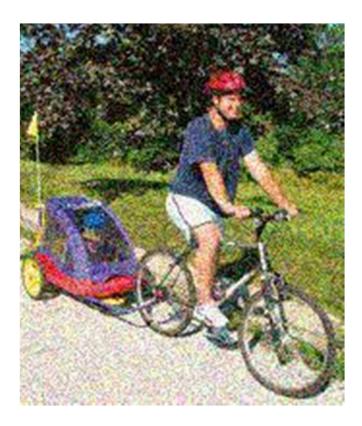
OCP key recommendations:

- Develop proposed cycle network
- Maintain and improve existing facilities

Encouraging Cycling

Cycle facility design needs to:


- Consider human factors
 - Perceptual and cognitive needs of users
- Recognize different cycling skills
 - □ Child / novice
 - Basic competency
 - Experienced


Measuring Success

- □ Past experience tells us that:
 - If we execute appropriate design
 - Design for all users
 - Recognize varying skills

...we expect the cycling mode to grow with success

Project Goals

Project Goals

Goal #1: Safety assessment process

Goal #2: Carry out this process

Goal #3: Cycle facility selection

- Research relative safety performance
- Develop selection criteria
- On and off-road facilities

Achieving Goal #1

Site Evaluation Methodology

□ Requirements:

- Comprehensive
- Considers all users (cyclists, drivers, peds)
- Considers site-specific characteristics
- Applies a consistent evaluation
- Generally follows safety audit process

Achieving Goal #2

Selecting The Sites

□ City selected 10 sites

Selection criteria based on:

- Collision history
- Feedback from survey

10 sites consisted of

- 7 roadway segments
- 3 intersection segments

Where Are The Sites?

Roadways

- Albert/Bronson/Queen (modified)
- O'Connor Street
- Montreal Road
- Bank Street
- St. Patrick Street
- Gladstone/Tyndall/Byron
- Laurier Avenue

Intersections

- Wellington at Lyon
- Maitland Ave at Queensway ramps
- MacKenzie King at Waller

Goal #2

The Assessment Results

Goal #2

On-site CERS Audit (1)

Applied CERS process "Cycling Environment Review System"

□ Scoring systems for:

- Roadway segments
- Intersections

On-site CERS Audit (2)

□ Scoring parameters include:

Convenience, accessibility/safety, comfort, attractiveness

□ Scoring system:

VERY POOR		POOR	AVERAGE	GOOD	VERY GOO	D
-3	-2	-1	0	1	2	3

CERS Scoring Results

Intersections:

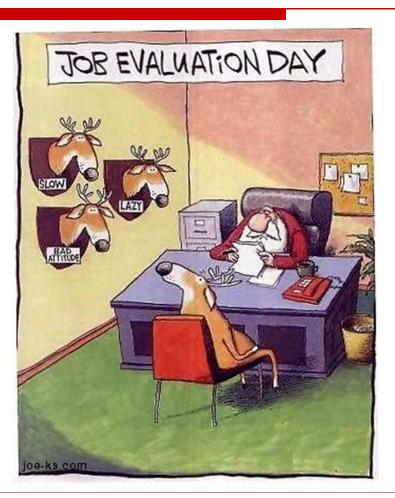
		Intersections					
		Site #1	Site #3	Site #4a	Site #4b	Average	
				EB	WB	Average	
	Cyclist provision	-2	-3	2	-2	-1	
Convenience	Deviation from the desire line	1	2	2	2	2	
	Legibility	-2	-3	2	-3	-2	
Accessibility / Safety	Performance	-1	-3	2	-3	-1	
	Capacity	-1	-1	1	-2	-1	
	Delay	0	2	2	-3	0	
	Sightlines	3	-2	2	-2	0	
Comfort	Gradient	2	-1	1	-1	0	
	Surface quality	1	-3	2	1	0	
	Obstructions	2	0	3	-1	1	
	Maintenance	1	0	3	1	1	

CERS Scoring Results

Road segments:

		Site #2	Site #5	Site #6	Site #7	Site #8	Site #9	Site #10	Average
	Continuity	2	-2	-3	-1	-3	-3	-2	-2
Convenience	Legibility	-1	1	-2	-1	-1	-3	-1	-1
	Directness	-1	2	1	2	1	-3	2	0
	Worst intersection conflict	-1	-3	-3	0	-2	-2	-2	-2
	Traffic volume	0	-3	-3	-3	-3	-3	-3	-3
Accessibility / Safety	Traffic proximity & mix	2	-3	-1	-3	0	0	0	-1
	Traffic speed	2	0	-1	2	-3	0	-1	0
	Link conflicts	0	-3	-3	-3	-3	-2	-2	-2
	Effective width	1	-3	-2	-3	-3	1	-1	-2
Comfort	Surface quality	-2	-2	-2	2	-2	-3	-2	-2
Comfort	Maintenance	-1	-2	1	1	1	1	1	0
Overall effort		-2	3	2	-2	0	3	1	1
	Personal Security	1	-1	0	2	2	2	2	1
Attractiveness	Lighting	2	1	2	2	3	0	0	2
	Quality of the environment	1	-2	-2	1	2	2	1	0

Ottawa Cycling Safety Study


Evaluation Findings

□ The safety process allowed us to:

- Identify systemic issues
- Identify site specific challenges
- Confirm the office investigation

Goal #2

Deciding What To Do

Goal #2

The Technical Workshop (1)

□ Intent:

- Address site challenges
- Develop candidate solutions

□ Attended by:

MRC, TRL & a CANBIKE instructor

The Technical Workshop (2)

- □ Information sourced from:
 - Office-based investigation characteristics
 - Field evaluation (CERS) risks
 - Cyclist outreach program user input
- An evidence-based review
- Appropriate solutions identified

Site Solutions

Existing Proposal Challenges Observations Eastbound Westbound · Getting into median cycle lanes (across · Median cycle lanes (curb lanes reserved Improve distinction between bicycle · Close gap in median (physical for transit - busy Rideau Centre terminal) bridge) signals and traffic signals barrier) and remove westbound cycle · Bicycle signals and advance phases · High-risk westbound movement from lane between Stewart Street and · Bicycle phase length extension (to Westbound cycle lane markings on Stewart St to MacKenzie King Bridge Stewart St not currently installed · Many trucks and busses present reflect demand) bridge · High pedestrian volumes - U of Ottawa · Few appropriate route alternatives · Advance bicycle detectors (to Implement segregated path from and Rideau Centre nearby minimize delay) Stewart St to MacKenzie King & Waller Improve signage directing cyclists intersection along bike route · Exclusive bike phase to cross intersection & access cycle lanes on bridge Stewart **Cyclists directed** cross intersection in both directions Median by bike signals ike lanes MacKenzie King Bridge Contraflo MacKenzie King Bridge Install 2-way bike lanes bike path behind sidewalk Pedestrian Bicycle plaza area Relocate crosswalk Ē to accommodate cycle crossing MacKenzie King 🔥

April 12th, 2011

at Waller

Achieving Goal #3

The Process

Carefully focused literature review
Identify safety/comfort criteria
Develop facility selection process

The Literature Review

□ The state of practice

- Netherlands
- United States
- Australasia
- Denmark
- United Kingdom
- Germany
- Helsinki

Literature Review Findings

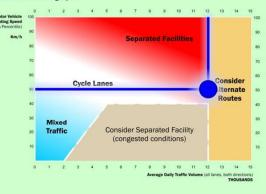
- □ 3 basic principles:
 - Choice to segregate is not "yes" or "no"
 - Selection criteria need to be flexible
 - Decision requires professional judgment

These principles were carried forward

The Selection Process

□ A 3-step process:

- Facility pre-selection based on:
 - □ safety & comfort
 - □ risk & exposure
- Establish site characteristics
- A process to summarize rationale for final decision


Step 1

Pre-selection Using Nomograph

Step One Pre-select the facility type

Example B: Bank Street (from Echo Drive to Riverside)

Cycle Facility Pre-selection Nomograph

Traffic volume: 12,000 vpd Operating speed: 50 km/h

Result: Could be one of three options:

- > cycle lanes
- > separated facilities
- > consider alternate route

Step 2

Site characteristics

Step Two A more detailed look

This view shows the following relevant factors:

Traffic speed: Low (30 to 50 km/h)

Traffic volume: High (> 10,000)

Function: mobility and access Vehicle Mix: bus stops,

buses, trucks On-street parking: parallel on-street parking; high

demand and turnover **Available space:** sufficient curb-to-curb width for motorists and cyclists **Anticipated users:** experienced cyclists **Level of bicycle use:** high >50/hr

Describe Your Site:

The Table in Appendix B has descriptors from the following categories:

- Speed
- Volume
- Function
- Vehicle Mix
- On-street parking Intersection/access density
- Collision history
- Available space
- User skill
- User density
- Route function
- Project type
- Costs/funding

Check all that apply.

Select Rules: From the column next to each

checkmark, extract each rule.

This view shows the following relevant factors:

Function: direct access Intersection / access density: numerous driveways

Step 3

Decision rationale

Step Three Develop your rationale

If Step 1 yields a result different than Step 2 or if Step 1 is inconclusive, prepare a rationale for selecting a preferred option:

Bank Street is a north-south spine route. There are limited alternatives to this north-south route due to its location between the Rideau Canal and river. This area of the City is dense and well-established with numerous accesses and side-streets. Therefore, site conditions appear incompatible with a separated facility. Explore opportunities to implement a cycle lane.

List the relevant rules:

See Table in Appendix B

Document your design considerations to support the rationale.

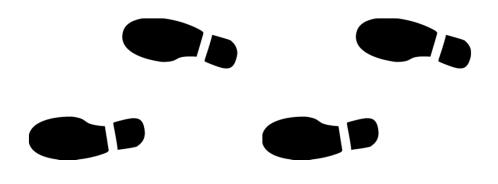
Given the importance of vehicle parking for local merchants and residents, some form of on-street parking should remain on Bank Street. Explore opportunities to re-configure on-street parking or limit availability of on-street parking. This will make roadway width available for an exclusive space for cyclists – in the form of a cycle lane with an addition buffer if next to parking.

Summary of Goal #3

- Technical basis is extensive
- Uses a consistent framework
- Easily deployed
- Allows flexibility for site conditions
- Provides guidance to designers

...keys to providing a successful cycling network

Project Status

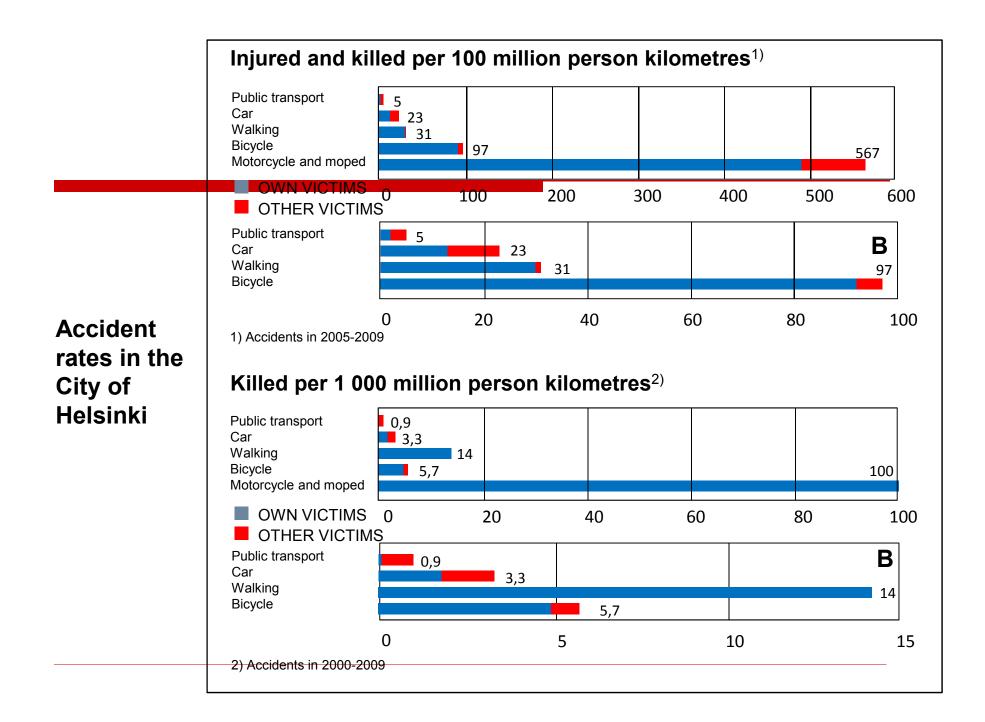


Project Status

- Project goals met
- Draft documentation submitted
- Technology transfer to City:
 - Cycling safety assessment process
 - Foundation for cycling safety toolbox
 - Facility decision support process

Next steps

Review comments from committee
Finalize reports & tools
Ready for deployment decision



Discussion...

April 12th, 2011

The Helsinki Experience

Figure 6: Bicycle mileage per person and cyclist fatalities/100 million km in ten countries /1/.

	C YCL ING KILOME TRES PER PERSON PER DA Y	CYCLISTS KILLED PER 100 MILLION KILOME TRES
GREAT BRITAIN	0.1	6.0
ITALY	0.2	11
AUSTRIA	0.4	6.8
NORWAY	0.4	3.0
SWITZERLAND	0.5	3.7
FINLAND	0.7	5.0
GERMANY	0.8	3.6
SWEDEN	0.9	1.8
DENMARK	1.7	2.3
THE NETHERLANDS	3.0	1.6

Pasanen E.: Safety problems of pedestrians and cyclists. An internal report of the WALCYNG-project. Helsinki 1997.

April 12th, 2011

Figure 2: Bicycle use and bicycle accidents on different facility types in Helsinki <u>/5/</u>.

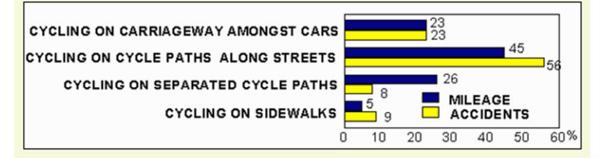
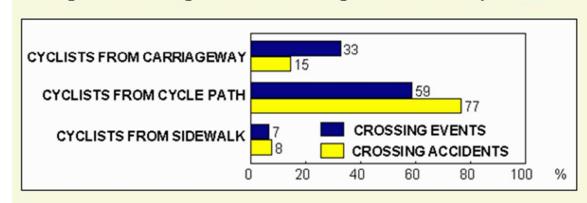
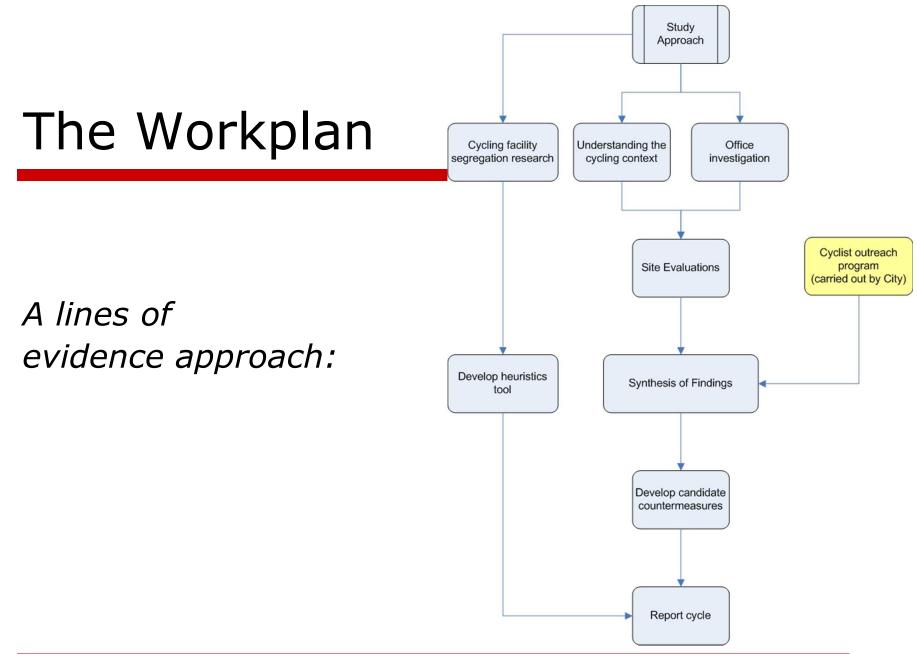




Figure 3: Crossing events and crossing accidents for bicycles <u>/5/</u>.

